Resumen
CANIA cree que la inteligencia artificial tiene un tremendo potencial para resolver problemas importantes en la sociedad y mejorar la vida de las personas. Al mismo tiempo, individuos y organizaciones deben enfrentarse a nuevas formas de automatización, distribución de riqueza y toma de decisiones económicas. Si la inteligencia artificial promueve la igualdad o aumenta la injusticia, si nos hace a todos más ricos o a los pobres más pobres, es una elección que debemos hacer conscientemente como mundo.
Para avanzar hacia un futuro económico beneficioso mediante la inteligencia artificial, este programa reúne a organizaciones asociadas, economistas y representantes de trabajadores. Juntos, estos actores trabajan para encontrar respuestas y recomendaciones compartidas sobre pasos concretos que deben tomarse para asegurar que la inteligencia artificial respalde un futuro económico inclusivo.
Guidelines for AI and Shared Prosperity
Explore PAI’s Guidelines for AI and Shared Prosperity: tools to design and deploy AI systems in service of workers’ rights and well-being.
Testimonios
Our AI, Labor, and the Economy Work
To chart a course where AI’s economic benefits don’t enrich the few at the expense of the many, 23 notable thinkers from around the globe were brought together virtually in the fall of 2020 to form the AI and Shared Prosperity Initiative’s Steering Committee, identifying major topics of study for this emerging discipline of responsible AI. Based on these deliberations, the AI, Labor, and the Economy Program released “Redesigning AI for Shared Prosperity: an Agenda” in May 2021, outlining practical questions stakeholders need to collectively find answers to in order to successfully steer AI toward expanding access to good jobs—and away from eliminating them.
More recently, the Program released a whitepaper outlining recommendations for improving the labor conditions within AI development itself, specifically those of the professionals who clean and label training data or otherwise contribute human judgment to AI systems. Drawing on insights from a workshop series that brought together over 30 professionals from different areas of the data enrichment ecosystem, “Responsible Sourcing of Data Enrichment Services” highlights how specific decisions made by stakeholders within AI companies impact the working conditions, well-being, and livelihoods of data enrichment professionals.
Participa
Para recibir actualizaciones sobre este programa, incluyendo correos electrónicos trimestrales de actualización, subscríbete aquí.